3.2.73 \(\int \frac {(a+a \cos (c+d x))^4}{\cos ^{\frac {9}{2}}(c+d x)} \, dx\) [173]

3.2.73.1 Optimal result
3.2.73.2 Mathematica [C] (verified)
3.2.73.3 Rubi [A] (verified)
3.2.73.4 Maple [B] (verified)
3.2.73.5 Fricas [C] (verification not implemented)
3.2.73.6 Sympy [F(-1)]
3.2.73.7 Maxima [F]
3.2.73.8 Giac [F]
3.2.73.9 Mupad [B] (verification not implemented)

3.2.73.1 Optimal result

Integrand size = 23, antiderivative size = 147 \[ \int \frac {(a+a \cos (c+d x))^4}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=-\frac {64 a^4 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {136 a^4 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {2 a^4 \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {8 a^4 \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {94 a^4 \sin (c+d x)}{21 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {64 a^4 \sin (c+d x)}{5 d \sqrt {\cos (c+d x)}} \]

output
-64/5*a^4*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/ 
2*d*x+1/2*c),2^(1/2))/d+136/21*a^4*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d* 
x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/7*a^4*sin(d*x+c)/d/cos( 
d*x+c)^(7/2)+8/5*a^4*sin(d*x+c)/d/cos(d*x+c)^(5/2)+94/21*a^4*sin(d*x+c)/d/ 
cos(d*x+c)^(3/2)+64/5*a^4*sin(d*x+c)/d/cos(d*x+c)^(1/2)
 
3.2.73.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 1.04 (sec) , antiderivative size = 171, normalized size of antiderivative = 1.16 \[ \int \frac {(a+a \cos (c+d x))^4}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\frac {2 a^4 \csc (c+d x) \left (5 \operatorname {Hypergeometric2F1}\left (-\frac {7}{4},\frac {1}{2},-\frac {3}{4},\cos ^2(c+d x)\right )+7 \cos (c+d x) \left (4 \operatorname {Hypergeometric2F1}\left (-\frac {5}{4},\frac {1}{2},-\frac {1}{4},\cos ^2(c+d x)\right )+5 \cos (c+d x) \left (2 \operatorname {Hypergeometric2F1}\left (-\frac {3}{4},\frac {1}{2},\frac {1}{4},\cos ^2(c+d x)\right )+4 \cos (c+d x) \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},\frac {1}{2},\frac {3}{4},\cos ^2(c+d x)\right )-\cos ^2(c+d x) \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},\cos ^2(c+d x)\right )\right )\right )\right ) \sqrt {\sin ^2(c+d x)}}{35 d \cos ^{\frac {7}{2}}(c+d x)} \]

input
Integrate[(a + a*Cos[c + d*x])^4/Cos[c + d*x]^(9/2),x]
 
output
(2*a^4*Csc[c + d*x]*(5*Hypergeometric2F1[-7/4, 1/2, -3/4, Cos[c + d*x]^2] 
+ 7*Cos[c + d*x]*(4*Hypergeometric2F1[-5/4, 1/2, -1/4, Cos[c + d*x]^2] + 5 
*Cos[c + d*x]*(2*Hypergeometric2F1[-3/4, 1/2, 1/4, Cos[c + d*x]^2] + 4*Cos 
[c + d*x]*Hypergeometric2F1[-1/4, 1/2, 3/4, Cos[c + d*x]^2] - Cos[c + d*x] 
^2*Hypergeometric2F1[1/4, 1/2, 5/4, Cos[c + d*x]^2])))*Sqrt[Sin[c + d*x]^2 
])/(35*d*Cos[c + d*x]^(7/2))
 
3.2.73.3 Rubi [A] (verified)

Time = 0.38 (sec) , antiderivative size = 147, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {3042, 3236, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \cos (c+d x)+a)^4}{\cos ^{\frac {9}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^4}{\sin \left (c+d x+\frac {\pi }{2}\right )^{9/2}}dx\)

\(\Big \downarrow \) 3236

\(\displaystyle \int \left (\frac {4 a^4}{\cos ^{\frac {3}{2}}(c+d x)}+\frac {6 a^4}{\cos ^{\frac {5}{2}}(c+d x)}+\frac {4 a^4}{\cos ^{\frac {7}{2}}(c+d x)}+\frac {a^4}{\cos ^{\frac {9}{2}}(c+d x)}+\frac {a^4}{\sqrt {\cos (c+d x)}}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {136 a^4 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}-\frac {64 a^4 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {94 a^4 \sin (c+d x)}{21 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {8 a^4 \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 a^4 \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {64 a^4 \sin (c+d x)}{5 d \sqrt {\cos (c+d x)}}\)

input
Int[(a + a*Cos[c + d*x])^4/Cos[c + d*x]^(9/2),x]
 
output
(-64*a^4*EllipticE[(c + d*x)/2, 2])/(5*d) + (136*a^4*EllipticF[(c + d*x)/2 
, 2])/(21*d) + (2*a^4*Sin[c + d*x])/(7*d*Cos[c + d*x]^(7/2)) + (8*a^4*Sin[ 
c + d*x])/(5*d*Cos[c + d*x]^(5/2)) + (94*a^4*Sin[c + d*x])/(21*d*Cos[c + d 
*x]^(3/2)) + (64*a^4*Sin[c + d*x])/(5*d*Sqrt[Cos[c + d*x]])
 

3.2.73.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3236
Int[((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*( 
x_)])^(m_.), x_Symbol] :> Int[ExpandTrig[(a + b*sin[e + f*x])^m*(d*sin[e + 
f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, n}, x] && EqQ[a^2 - b^2, 0] && IGt 
Q[m, 0] && RationalQ[n]
 
3.2.73.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(438\) vs. \(2(179)=358\).

Time = 10.46 (sec) , antiderivative size = 439, normalized size of antiderivative = 2.99

method result size
default \(-\frac {32 \sqrt {-\left (-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, a^{4} \left (\frac {253 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{420 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}-\frac {47 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}{672 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-\frac {1}{2}\right )^{2}}-\frac {4 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )}{5 \sqrt {-\left (-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}}-\frac {2 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \left (F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{5 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}-\frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}{80 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-\frac {1}{2}\right )^{3}}-\frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}{896 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-\frac {1}{2}\right )^{4}}\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(439\)
parts \(\text {Expression too large to display}\) \(1026\)

input
int((a+cos(d*x+c)*a)^4/cos(d*x+c)^(9/2),x,method=_RETURNVERBOSE)
 
output
-32*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^4*(253/420 
*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/ 
2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^ 
(1/2))-47/672*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2* 
c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^2-4/5*sin(1/2*d*x+1/2*c)^2*cos(1/2* 
d*x+1/2*c)/(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)-2/5*( 
sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2* 
d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(EllipticF(cos(1/2*d*x+1/2*c),2^( 
1/2))-EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))-1/80*cos(1/2*d*x+1/2*c)*(-2*s 
in(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2) 
^3-1/896*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2) 
^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^4)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2 
*c)^2-1)^(1/2)/d
 
3.2.73.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.09 (sec) , antiderivative size = 215, normalized size of antiderivative = 1.46 \[ \int \frac {(a+a \cos (c+d x))^4}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=-\frac {2 \, {\left (170 i \, \sqrt {2} a^{4} \cos \left (d x + c\right )^{4} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 170 i \, \sqrt {2} a^{4} \cos \left (d x + c\right )^{4} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 336 i \, \sqrt {2} a^{4} \cos \left (d x + c\right )^{4} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 336 i \, \sqrt {2} a^{4} \cos \left (d x + c\right )^{4} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - {\left (672 \, a^{4} \cos \left (d x + c\right )^{3} + 235 \, a^{4} \cos \left (d x + c\right )^{2} + 84 \, a^{4} \cos \left (d x + c\right ) + 15 \, a^{4}\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )\right )}}{105 \, d \cos \left (d x + c\right )^{4}} \]

input
integrate((a+a*cos(d*x+c))^4/cos(d*x+c)^(9/2),x, algorithm="fricas")
 
output
-2/105*(170*I*sqrt(2)*a^4*cos(d*x + c)^4*weierstrassPInverse(-4, 0, cos(d* 
x + c) + I*sin(d*x + c)) - 170*I*sqrt(2)*a^4*cos(d*x + c)^4*weierstrassPIn 
verse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 336*I*sqrt(2)*a^4*cos(d*x + 
c)^4*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*si 
n(d*x + c))) - 336*I*sqrt(2)*a^4*cos(d*x + c)^4*weierstrassZeta(-4, 0, wei 
erstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) - (672*a^4*cos(d*x 
 + c)^3 + 235*a^4*cos(d*x + c)^2 + 84*a^4*cos(d*x + c) + 15*a^4)*sqrt(cos( 
d*x + c))*sin(d*x + c))/(d*cos(d*x + c)^4)
 
3.2.73.6 Sympy [F(-1)]

Timed out. \[ \int \frac {(a+a \cos (c+d x))^4}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\text {Timed out} \]

input
integrate((a+a*cos(d*x+c))**4/cos(d*x+c)**(9/2),x)
 
output
Timed out
 
3.2.73.7 Maxima [F]

\[ \int \frac {(a+a \cos (c+d x))^4}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\int { \frac {{\left (a \cos \left (d x + c\right ) + a\right )}^{4}}{\cos \left (d x + c\right )^{\frac {9}{2}}} \,d x } \]

input
integrate((a+a*cos(d*x+c))^4/cos(d*x+c)^(9/2),x, algorithm="maxima")
 
output
integrate((a*cos(d*x + c) + a)^4/cos(d*x + c)^(9/2), x)
 
3.2.73.8 Giac [F]

\[ \int \frac {(a+a \cos (c+d x))^4}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\int { \frac {{\left (a \cos \left (d x + c\right ) + a\right )}^{4}}{\cos \left (d x + c\right )^{\frac {9}{2}}} \,d x } \]

input
integrate((a+a*cos(d*x+c))^4/cos(d*x+c)^(9/2),x, algorithm="giac")
 
output
integrate((a*cos(d*x + c) + a)^4/cos(d*x + c)^(9/2), x)
 
3.2.73.9 Mupad [B] (verification not implemented)

Time = 15.67 (sec) , antiderivative size = 199, normalized size of antiderivative = 1.35 \[ \int \frac {(a+a \cos (c+d x))^4}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\frac {2\,a^4\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {8\,a^4\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {4\,a^4\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {3}{4},\frac {1}{2};\ \frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,{\cos \left (c+d\,x\right )}^{3/2}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {8\,a^4\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {5}{4},\frac {1}{2};\ -\frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{5\,d\,{\cos \left (c+d\,x\right )}^{5/2}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {2\,a^4\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {7}{4},\frac {1}{2};\ -\frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{7\,d\,{\cos \left (c+d\,x\right )}^{7/2}\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \]

input
int((a + a*cos(c + d*x))^4/cos(c + d*x)^(9/2),x)
 
output
(2*a^4*ellipticF(c/2 + (d*x)/2, 2))/d + (8*a^4*sin(c + d*x)*hypergeom([-1/ 
4, 1/2], 3/4, cos(c + d*x)^2))/(d*cos(c + d*x)^(1/2)*(sin(c + d*x)^2)^(1/2 
)) + (4*a^4*sin(c + d*x)*hypergeom([-3/4, 1/2], 1/4, cos(c + d*x)^2))/(d*c 
os(c + d*x)^(3/2)*(sin(c + d*x)^2)^(1/2)) + (8*a^4*sin(c + d*x)*hypergeom( 
[-5/4, 1/2], -1/4, cos(c + d*x)^2))/(5*d*cos(c + d*x)^(5/2)*(sin(c + d*x)^ 
2)^(1/2)) + (2*a^4*sin(c + d*x)*hypergeom([-7/4, 1/2], -3/4, cos(c + d*x)^ 
2))/(7*d*cos(c + d*x)^(7/2)*(sin(c + d*x)^2)^(1/2))